August 10, 2024

- Building Construction (76)
- Building Materials (73)
- Columns (2)
- Concrete Beam (3)
- Concrete Construction Techniques (4)
- Concrete Mix Design (9)
- Concrete Repair (11)
- Concrete Slab (10)
- Construction Equipment (15)
- Construction News (7)
- Design of Structures (14)
- Engineering Drawing (1)
- Estimation (2)
- Geotechnical engineering (25)
- Highway Engineering (11)
- Innovations (27)
- Material Testing (8)
- Matrix Analysis of Structures (2)
- Mechanical Engineering (3)
- Transportation Engineering (9)

- September 20234
- August 20231
- July 202312
- June 202310
- May 202311
- April 202310
- March 202318
- February 20234
- January 20238
- December 20229
- November 20229
- October 202212
- August 202217
- July 202211
- June 202215
- May 20221
- April 202213
- March 202215
- February 202214
- January 202223
- December 20216
- November 20212
- October 20217
- September 20215
- August 202118
- July 202122
- June 202115
- May 20216
- April 202110
- March 202111
- February 202132
- January 202123
- December 202011
- November 20203
- September 202019
- August 202012
- July 20204
- June 202010
- May 202012
- April 202010
- March 20206
- February 20203
- November 20192
- October 20194
- September 20193
- August 201915
- July 20199
- June 20191
- May 20193
- April 20192
- March 20193
- February 20195
- October 20182
- August 20182
- June 20183
- April 20187
- March 201813
- February 20189
- January 20184
- December 20171
- October 20172
- September 201711
- August 20176
- July 201713
- June 20177
- May 20176
- April 20171
- March 20172
- January 20171

Neenu
July 17, 2021

Target mean strength (fm) is defined as the design strength determined for the manufacture of reinforced concrete. Target mean strength is determined by the formula:

fm = fck + 1.65𝛔

Where, fm = Target mean strength, fck = characteristic compressive strength, 𝛔 = standard deviation

No Time to Read: What is Target Mean Strength?

Fig.1. Normal distribution curve showing characteristic compressive strength and target mean strength, and margin. |

In simple words, an M20 concrete implies a concrete with characteristic compressive strength of 20N/mm2. But in real practice, in order to make a concrete with a strength of minimum 20 N/mm2, we need to design a concrete with a higher value. Only then, after all possible losses if any, we finally get a concrete equal or greater than 20N/mm2. A higher strength value more than intended is fine, but a lesser value is not acceptable.

In the above equation, the quantity 1.65𝛔 represents the margin by which the target mean strength must exceed the required characteristic strength, and it is called as current margin. (Fig.1)

If we need to design a concrete with characteristic mean strength of 30 N/mm2, what will be the target mean strength and the current margin to be used in the mix design, if standard deviation is 6 N/mm2?

Target mean strength ,fcm = fck + 1.65𝛔 = 30 + (1.65 x 6 ) = 39.9 N/mm2

Current Margin = 9.9 N/mm2

After the analysis of numerous concrete test results, for various projects, the strength of concrete falls into some pattern of normal frequency distribution curve as shown in the figure-2 below.

Fig.2. Normal Distribution Curve |

This means, the area below fck is 5% of the total area and area after fck is 95 % of total area. This means 95 percent of the test results gave a value of strength greater than fck.

As the graph conveys, a failure of 5 % is normally chosen for concrete mix design and 95 percent of the samples must show a strength value greater than fck. This can be only possible if we, design the concrete using target mean strength.

If we analyze the standard deviation values for normal distribution curve, we get the distance between A and B as 1.65𝛔. The mean of the curve is at B.

Characteristic strength is a lower limit of strength that is used in structural design. Concrete shows inherent variability of strength with all design mix materials, so we need to design the concrete for a mean strength value which is somewhat greater than the characteristic strength. This strength for which the concrete is design is the target mean strength. In the graph, the target mean strength is at B, which is OA + OB = fck + 1.65𝛔

The difference between the characteristic compressive strength and target mean strength = margin = 1.65𝛔

From the above explanation, it is clear that we need a clear idea on standard deviation to obtain the mean strength from a normal distribution curve. For an existing concrete production facility, previous test results will help. For areas with less previous results, a standard deviation versus characteristic strength of concrete graph can be referred, based on codes or regulations of the country.

Now from the graph, it is clear that the target mean strength increases with the increase in standard deviation. When there is poor quality control, higher standard deviation is used to obtain higher target mean strength to obtain the desired strength.

Increasing the target mean strength would increase the cost of manufacture. If we really want to reduce the standard deviation, we need better quality control and hence higher cost. This hence demand a compromise.

In UK, the value of standard deviation is mainly between 4.5 to 7 N/mm2. A value less than 4 N/mm2 is seldom obtained.

This is why, quality of materials used in concrete mix design really matters the design strength.

March 02, 2022

January 19, 2022

March 22, 2024

July 17, 2021

July 02, 2020

August 11, 2021

September 10, 2017

March 02, 2022

Created By SoraTemplates | Distributed By Gooyaabi Templates

Close Menu

## 0 Comments

Commenting Spam Links Are Against Policies